Exercises corresponding to Appendix of book:
 Mathematics with applications in micro economics

Exercise 1.1 (point of intersection)
a) Sketch the graphs of the following two functions $y(x)=3 x+2$ and $y(x)=-5 x+4$,
b) Determine the point of intersection of these functions.

Exercise 1.2 (break-even point)
Consider the revenue function $R(x)=p x, p>0$ and the cost function $C(x)=c+v x, c>0,0<v<p$. Determine the break-even point, i.e. $R(x)=C(x)$,

Exercise 1.3 (zero points quadratic function)
Determine the zero points of the following quadratic functions:
a) $y(x)=x^{2}+7 x+6$,
b) $y(x)=4 x^{2}+2 x+1$
c) $y(x)=2 x^{2}+12 x+18$.

Exercise 1.4 (x-intercepts of quadratic function)
Determine p such that the following quadratic functions have two x-intercepts:
a) $y(x)=x^{2}+p x+3$,
b) $y(x)=-2 x^{2} 2-x+p$,
c) $y(x)=p x+2 p x+1$.

Exercise 1.5 (graph of quadratic function)
a) Sketch the graphs of the following two functions $y(x)=x^{2}+4 x+3$ and $y(x)=$ $-x^{2}+6$
b) Calculate the points of intersection of the graphs of these functions.

Exercise 1.6 (comparing functions)
a) Consider the functions $f(x)=2 x+4$ and $g(x)=2 x^{2}+3 x+4$. Determine all x such that $f(x) \geq g(x) .22$
b) Consider the functions $f(x)=x+4 x+3$ and $g(x)=-x+6$. Determine all x such that $f(x) \geq g(x)$.

Exercise 1.7 (intersection functions)
Consider the $y_{1}(x)=\frac{1}{4} x^{2}-5 x$ functions +6 and $y_{2}(x)=3 x+p$. Determine all p such that the two functions have no point in common.

Exercise 1.8 (solving equations by factorizing)
Solve the following equations:
a) $x^{2}+x-22=0$,
b) $2 x_{3}-2 x_{2}+x-1=0$,
c) $x_{3}+2 x-4 x_{2}-8=0$,
d) $2 x_{4}-2 x 3+x-x=0$.

Exercise 1.9 (comparing functions)

a) Consider the functions $f(x)=\frac{2-x}{3+x}$ and $g(x)=-x+1$. Determine all $x>-3$ such that $f(x)$ $\geq g(x)$
b) Consider the functions $f(x)=\frac{1-x^{2}}{3+x}$ and $g(x)=x+1$. Determine all $x>-3$ such that $f(x)$ $\leq g(x)$

Exercise 1.10 (using properties power functions)
Determine m and n if the following expression are simplified into $x^{m} y^{n}$
a) $x^{2} x^{5} y y^{2}$
b) $\frac{x^{\frac{1}{3}} y^{2}}{x^{-\frac{2}{3}} y^{-1}}$
c) $(x-1 y 4)^{2}$
d) $x^{\frac{10}{6}} \sqrt[3]{x}$

Exercise 1.11 (power calculations)
Consider the functions $y_{1}(x)=\sqrt{2 x+3 \text { and }} y_{2}(x)=x$.
a) Draw the graphs of $y_{1}(x)$ and $y_{2}(x)$ in one figure
b) Calculate the points of intersection of the graphs of these two functions
c) Solve the inequality $y_{1}(x)<y_{2}(x)$.

Exercise 1.12 (using properties exponential functions) Rewrite the
following expressions as a power of 2 :
a) 8
b) $8 \frac{4}{3}$
c) $\sqrt{32}$
d) $64^{-\frac{1}{2}}$

Exercise 1.13 (using properties exponential functions)

Solve the following equations:
a) $2 x=44 x+6$
b) $27^{2}=\left(\frac{1}{3}\right)^{-+2} x_{x}$
c) $\left(\frac{1}{4}\right)^{x^{2}-1}=1$

Exercise 1.14 (intersection functions)
Consider the functions $y_{1}(x)=3^{x+2}$ and $y_{2}(x)=24+3^{x}$. Determine the point of intersection of the graphs of these two functions.

Exercise 1.15 (using properties logarithmic function) Express the
following expressions in a single logarithm
a) $\log x+2 \log y$
b) $\log x+\log \left(\frac{1}{y}\right)-\log z$

Exercise 1.16 (solving equation)

Solve the following equations
a) $\ln (x+7)+\ln (x+3)=0$
b) $\left({ }^{3} \log x\right)^{2}+6=5 .{ }^{3} \log x$

Exercise 1.17

Determine a such that the equation

$$
\frac{x}{3}-\frac{a}{x}=2
$$

has precisely one solution.

Exercise 1.18

The demand of a good is given by $q=60-10 p$. The fixed cost of the production of this good is 25 Euro and the variable costs are 2 Euro per unit. The total revue are $T R(p)=p q$. Determine the break even point.

Exercise 1.19 Solve
the inequality

$$
x^{3}+2 x \leq 3 x^{2} .
$$

Exercise 1.20

Consider the functions $y_{1}(x)={ }^{2} \log (x-2)$ and $y_{2}(x)=2-{ }^{2} \log (x+4)$.
a) Determine all x such that $y_{1}(x)>3$.
b) Determine all x such that $y_{1}(x)<y_{2}(x)$.

Exercise 2.21 (difference quotient)
The difference quotient of the function $y(x)=x^{2}+5 x+3$ in $x=a$ at a change of $\Delta x=3$ is equal to 3. Determine a.

Exercise 2.22 (difference quotient)
The average increase of the demand $q(p)=-p^{2}+4 p+7$ in $p=3$ at a change of Δp is equal to $\frac{1}{2}$. Determine Δp.

Exercise 2.23 (slope of line)

Determine the slope of the line that intersects the graph of the function $y(x)=x^{2}+5 x+6$ in the points ($1, y(1)$) and ($3, y(3)$).

Exercise 2.24 (slope of line)

A line intersects the graph of the function $y(x)=x^{2}+7$ in the points $(a, y(a))$ and $(b, y(b))$. The slope of this line is equal to 5 and $b-a=3$. Determine a and b.

Exercise 2.25 (difference quotient and derivative)
Consider the function $y(x)=\frac{x^{2}}{2 x+1}$.
a) Calculate the difference quotient in $x=2$ and $\Delta x=3$
b) Determine the number the difference quotient approaches if $\Delta x \rightarrow 0$ in $x=2$

Exercise 2.26 (tangent line)
Determine the tangent line in $(1, y(1))$ at the graph of the following functions:
a) $y(x)=x^{\frac{1}{2}} x^{\frac{1}{3}}$
b) $y(x)=2^{-x}$

Exercise 2.27 (slope of line)

The slope of the tangent line at the graph of the function $y(x)=x^{2}+3 x+4$ at the point $\left(x_{0}, y\left(x_{0}\right)\right)$ is equal to the slope of the line through the points $(0,4)$ and $(2,14)$. Determine x_{0}.
Exercise 2.28
Determine the tangent line at the graph of the function $y(x)=2 x^{2}+2$ that intersects the x-axis in $x=1$.

Solutions

Week 1

Exercise 1.1

a) p.m.;
b) $(x, y)=\left(\frac{1}{4}, 2 \frac{3}{4}\right)$.

Exercise 1.2
$x=\frac{c}{p-v}$.

Exercise 1.3

a) $x=-6, x=-1$;
b) no zero points;
c) $x=-3$.

Exercise 1.4

a) $p>\sqrt{ } 12, p<-\sqrt{ } 12 \ldots ;$
b) $p>-1 / 4$;
c) no intersection point for any p.

Exercise 1.5

a) p.m.;
b) $\left(-1-\frac{1}{2} \sqrt{10}, 2 \frac{1}{2}-\sqrt{10}\right),\left(-1+\frac{1}{2} \sqrt{10}, 2 \frac{1}{2}+\sqrt{10}\right)$.

Exercise 1.6
a) $-1 / 2 \leq x \leq 0$;
b) $x \leq-1-1 / 2^{\sqrt{ }} 10, x \geq-1+1 / 2 \sqrt{ } 10$.

Exercise $1.7 p \leq-58$.

Exercise 1.8

a) $x=1, x=-2$;
b) $x=1$;
c) $x=2, x=-2$;
d) $x=0, x=1$.

Exercise 1.9

a) $-3<x<-\frac{1}{2}-\frac{1}{2} \sqrt{5}, x>-\frac{1}{2}+\frac{1}{2} \sqrt{5}$;
b) $x \geq-1$.

Exercise 1.10

a) $m=7, n=3$;
b) $m=2, n=3$;
c) $m=-2, n=8$;
d) $m=2, n=0$.

Exercise 1.11

a) p.m.;
b) $(3,3)$;
c) $x>3$.

Exercise 1.12

a) 3 ;
b) 4 ;
c) $2 \frac{1}{2}$;
d) -3 .

Exercise 1.13

a) $x=-12 / 7$;
b) $x=-2 / 5$;
c) $x=-1, x=1$.

Exercise 1.14

$(1,27)$.
Exercise 1.15 a) $\log \left(x y^{2}\right)$;
b) $\log (x /(y z))$;

Exercise 1.16

a) $x=-5+\frac{1}{2} \sqrt{ } 20$;
b) $x=9, x=27$;

Exercise $1.17 a=-3$.

Exercise 1.18
$x=p=2+\frac{3}{2} \sqrt{6}$.
Exercise $1.19 x \leq 0,1 \leq x \leq 2$.

Exercise 1.20

a) $x>10$;
b) $2<x<-1+\frac{1}{2} \sqrt{52}$.

Exercise 2.21
$a=-\frac{15}{6}$.
Exercise $2.22 \Delta p=-2.5$.

Exercise 2.23

9.

Exercise 2.24 $a=1, b=4$.
Exercise 2.25
a) $\frac{\frac{5^{2}}{11}-\frac{4}{5}}{3}=\frac{27}{55}$;
b) $\frac{12}{25}$.

Exercise 2.26
a) $y=\frac{5}{6} x+\frac{1}{6}$;
b) $y=-\frac{1}{2}(\ln 2) x+\left(\frac{1}{2}+\frac{1}{2} \ln 2\right)$.

Exercise $2.27 x_{0}=1$.

Exercise 2.28
$y=4(1 \quad-\quad-\sqrt{2}) x-\quad-\quad 4(1-\sqrt{2}), \quad-\quad y=4(1+\quad-\quad \sqrt{2}) x-4(1+$ $\sqrt{2)}$

