Exercises corresponding to Appendix of book: Mathematics with applications in micro economics

Exercise 1.1 (point of intersection)

- a) Sketch the graphs of the following two functions y(x) = 3x+2 and y(x) = -5x+4,
- b) Determine the point of intersection of these functions.

Exercise 1.2 (break-even point)

Consider the revenue function R(x) = px, p > 0 and the cost function C(x) = c + vx, c > 0, 0 < v < p. Determine the break-even point, i.e. R(x) = C(x).

Exercise 1.3 (zero points quadratic function)

Determine the zero points of the following quadratic functions:

a) y(x) = x² + 7x + 6,
b) y(x) = 4x² + 2x + 1
c) y(x) = 2x² + 12x + 18.

Exercise 1.4 (x-intercepts of quadratic function)

Determine *p* such that the following quadratic functions have two *x*-intercepts:

- a) $y(x) = x^2 + px + 3$,
- b) $y(x) = -2x^2 x + p$,
- c) y(x) = px + 2px + 1.

Exercise 1.5 (graph of quadratic function)

- a) Sketch the graphs of the following two functions $y(x) = x^2 + 4x + 3$ and $y(x) = -x^2 + 6$,
- b) Calculate the points of intersection of the graphs of these functions.

Exercise 1.6 (comparing functions)

a) Consider the functions f(x) = 2x + 4 and $g(x) = 2x^2 + 3x + 4$. Determine all x such that $f(x) \ge g(x)$. 22

b) Consider the functions f(x) = x + 4x + 3 and g(x) = -x + 6. Determine all x

such that $f(x) \ge g(x)$.

Exercise 1.7 (intersection functions)

Consider the $y_1(x) = \frac{1}{4}x^2 - 5x$ functions + 6 and $y_2(x) = 3x + p$. Determine all p such that the two functions have no point in common.

Exercise 1.8 (solving equations by factorizing)

Solve the following equations:

- a) $x^2 + x 22 = 0$,
- b) $2x_3 2x_2 + x 1 = 0$,
- c) $x_3 + 2x 4x_2 8 = 0$,
- d) $2x_4 2x_3 + x x = 0.$

Exercise 1.9 (comparing functions)

- a) Consider the functions $f(x) = \frac{2-x}{3+x}$ and g(x) = -x+1. Determine all x > -3 such that $f(x) \ge g(x)$
- b) Consider the functions $f(x) = \frac{1-x^2}{3+x}$ and g(x) = x + 1. Determine all x > -3 such that $f(x) \le g(x)$

Exercise 1.10 (using properties power functions)

Determine *m* and *n* if the following expression are simplified into $x^m y^n$

a) $x^{2}x^{5}yy^{2}$ $\frac{xx^{\frac{1}{3}}y^{2}}{x^{-\frac{2}{3}}y^{-1}}$ b) $\frac{x^{\frac{1}{3}}y^{2}}{x^{-\frac{2}{3}}y^{-1}}$ c) $(x-1y_{4})z$ d) $x^{\frac{10}{6}}\sqrt[3]{x}$

Exercise 1.11 (power calculations)

Consider the functions $y_1(x) = \sqrt{2x + 3}$ and $y_2(x) = x$.

- a) Draw the graphs of $y_1(x)$ and $y_2(x)$ in one figure
- b) Calculate the points of intersection of the graphs of these two functions

c) Solve the inequality $y_1(x) < y_2(x)$.

Exercise 1.12 (using properties exponential functions) Rewrite the following expressions as a power of 2:

a) 8 b) $8\frac{4}{3}$ c) $\sqrt{32}$ d) $64^{-\frac{1}{2}}$

Exercise 1.13 (using properties exponential functions)

x

Solve the following equations:

a) $2x = 4_{4x+6}$ b) $27^2 = (\frac{1}{3})^{-} \frac{+2}{x}$ c) $(\frac{1}{4})^{x^2-1} = 1$

Exercise 1.14 (intersection functions)

Consider the functions $y_1(x) = 3^{x+2}$ and $y_2(x) = 24 + 3^x$. Determine the point of intersection of the graphs of these two functions.

$\ensuremath{\textit{Exercise}}\xspace$ 1.15 (using properties logarithmic function) Express the

following expressions in a single logarithm

a) $\log x + 2\log y$ b) $\log x + \log(\frac{1}{y}) - \log z$

Exercise 1.16 (solving equation)

Solve the following equations

a)
$$\ln(x + 7) + \ln(x + 3) = 0$$

b) $(3\log x)^2 + 6 = 5.3\log x$

Exercise 1.17

Determine *a* such that the equation

$$\frac{x}{3} - \frac{a}{x} = 2$$

has precisely one solution.

Exercise 1.18

The demand of a good is given by q = 60 - 10p. The fixed cost of the production of this good is 25 Euro and the variable costs are 2 Euro per unit. The total revue are TR(p) = pq. Determine the break even point.

Exercise 1.19 Solve the inequality

 $x^3+2x\leq 3x^2.$

Exercise 1.20

Consider the functions $y_1(x) = {}^2\log(x - 2)$ and $y_2(x) = 2 - {}^2\log(x + 4)$.

a) Determine all *x* such that $y_1(x) > 3$.

b) Determine all x such that $y_1(x) < y_2(x)$.

Exercise 2.21 (difference quotient)

The difference quotient of the function $y(x) = x^2 + 5x + 3$ in x = a at a change of $\Delta x = 3$ is equal to 3. Determine *a*.

Exercise 2.22 (difference quotient)

The average increase of the demand $q(p) = -p^2 + 4p + 7$ in p = 3 at a change of Δp is equal to $\frac{1}{2}$. Determine Δp .

Exercise 2.23 (slope of line)

Determine the slope of the line that intersects the graph of the function $y(x) = x^2+5x+6$ in the points (1,y(1)) and (3,y(3)).

Exercise 2.24 (slope of line)

A line intersects the graph of the function $y(x) = x^2+7$ in the points (a,y(a)) and (b,y(b)). The slope of this line is equal to 5 and b - a = 3. Determine a and b.

Exercise 2.25 (difference quotient and derivative)

Consider the function $y(x) = \frac{x^2}{2x+1}$.

- a) Calculate the difference quotient in x = 2 and $\Delta x = 3$
- b) Determine the number the difference quotient approaches if $\Delta x \rightarrow 0$ in x = 2

Exercise 2.26 (tangent line)

Determine the tangent line in (1, y(1)) at the graph of the following functions:

a)
$$y(x) = x^{\frac{1}{2}}x^{\frac{1}{3}}$$

b) $y(x) = 2^{-x}$

Exercise 2.27 (slope of line)

The slope of the tangent line at the graph of the function $y(x) = x^2 + 3x + 4$ at the point $(x_0, y(x_0))$ is equal to the slope of the line through the points (0,4) and (2,14). Determine x_0 . **Exercise 2.28**

Determine the tangent line at the graph of the function $y(x) = 2x^2 + 2$ that intersects the *x*-axis in x = 1.

Solutions

Week 1

Exercise 1.1 a) p.m.; b) $(x, y) = (\frac{1}{4}, 2\frac{3}{4}).$

Exercise 1.2

 $x = \frac{c}{p-v}$

Exercise 1.3

a) x = -6, x = -1;

- b) no zero points;
- c) x = -3.

Exercise 1.4

a)
$$p > \sqrt{12}, p < -\sqrt{12}$$
;

- b) p > -1/4;
- c) no intersection point for any *p*.

Exercise 1.5

a) p.m.; b) $(-1 - \frac{1}{2}\sqrt{10}, 2\frac{1}{2} - \sqrt{10}), (-1 + \frac{1}{2}\sqrt{10}, 2\frac{1}{2} + \sqrt{10}).$ Exercise 1.6 a) $-1/2 \le x \le 0$;

b)
$$x \le -1 - 1/2^{\sqrt{10}}, x \ge -1 + 1/2\sqrt{10}$$
.

Exercise 1.7 *p* ≤−58.

Exercise 1.8

a) x = 1,x = -2;
b) x = 1;
c) x = 2,x = -2;
d) x = 0,x = 1.

Exercise 1.9

a) $-3 < x < -\frac{1}{2} - \frac{1}{2}\sqrt{5}, x > -\frac{1}{2} + \frac{1}{2}\sqrt{5};$ b) $x \ge -1.$

Exercise 1.10

- a) m = 7,n = 3;
 b) m = 2,n = 3;
 c) m = -2,n = 8;
 d) m = 2,n = 0.
- «) ··· _).:

Exercise 1.11

- a) p.m.;
- b) (3,3);
 c) x > 3.
- C / X > J.

Exercise 1.12

- a) 3; b) 4; c) $2^{\frac{1}{2}};$
- d) -3.

Exercise 1.13

- a) x = -12/7;
- b) x = -2/5;
- c) x = -1, x = 1.

Exercise 1.14

(1,27).

Exercise 1.15 a) log(*xy*²); b) log(*x*/(*yz*));

Exercise 1.16

a)
$$x = -5 + \frac{1}{2}\sqrt{20}$$
;
b) $x = 9, x = 27$;

Exercise 1.17 *a* = -3.

Exercise 1.18

 $x = p = 2 + \frac{3}{2}\sqrt{6}.$

Exercise 1.19 $x \le 0, 1 \le x \le 2$.

Exercise 1.20

a) x > 10; b) $2 < x < -1 + \frac{1}{2}\sqrt{52}$. **Exercise 2.21** $a = -\frac{15}{6}$ **Exercise 2.22** $\Delta p = -2.5$. **Exercise 2.23** 9.

Exercise 2.24 *a* = 1,*b* = 4.

Exercise 2.25

a) $\frac{\frac{5^2}{11} - \frac{4}{5}}{3} = \frac{27}{55};$ b) $\frac{12}{25}.$

Exercise 2.26

a) $y = \frac{5}{6}x + \frac{1}{6}$; b) $y = -\frac{1}{2}(\ln 2)x + (\frac{1}{2} + \frac{1}{2}\ln 2)$. Exercise 2.27 $x_0 = 1$.

Exercise 2.28 $y = 4(1 - \sqrt{2})x - 4(1 - \sqrt{2}), \quad y = 4(1 + \sqrt{2})x - 4(1 + \sqrt{2})$