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Reliance on Algorithmic Estimates: The Joint Influence of Algorithm Adaptability and 
Measurement Uncertainty 

 
 

A B S T R A C T 
 

Measurement uncertainty can exacerbate the challenges associated with developing and evaluating 
complex accounting estimates. Companies, including public accounting firms, are developing 
systems that use advanced algorithms to help accounting professionals deal with this uncertainty. 
We conduct two experiments to examine whether and how accounting professionals’ reliance on 
an algorithmic system’s output is jointly influenced by the degree of measurement uncertainty and 
the system’s ability to adapt. In Experiment 1, we find that auditors are more willing to rely on 
advice from learning algorithms than static algorithms when measurement uncertainty is relatively 
high. In Experiment 2, we replicate this result in a general accounting context where preparers 
develop their own accounting estimates. Our findings demonstrate that accounting professionals’ 
reliance on algorithms is contextually dependent, and highlights algorithm adaptability as an 
important technological feature that can promote advice utilization, particularly when adaptability 
is important to the judgment context (e.g., heightened measurement uncertainty). 
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1. Introduction 

Measurement uncertainty arises when the valuation of a financial statement item is not 

directly observable and, therefore, requires significant judgment and estimation (SEC 2011; 

Bratten, Gaynor, McDaniel, Montague, and Sierra 2013; FASB 2016; FASB 2019). Measurement 

uncertainty can make it challenging for financial statement preparers to develop reliable 

accounting estimates and difficult for auditors to evaluate these estimates as they often include 

assumptions and inputs that are subjective, forward-looking, and unverifiable (Christensen, 

Glover, and Wood 2012; Glover, Taylor, and Wu 2017). Furthermore, macroeconomic factors can 

exacerbate the challenges associated with measurement uncertainty which ultimately could lead to 

lower financial reporting and audit quality (Deloitte 2022).  

As a means of confronting these uncertainties, companies are increasing their use of 

artificial intelligence (AI) to improve forecasts and operational decisions (McKinsey 2020a; 

McKinsey 2020b; Deloitte 2021b). Likewise, audit firms and financial service companies report 

that they are investing significant resources in developing advanced systems to help accounting 

professionals produce and evaluate complex accounting estimates (Deloitte 2018b; Bloomberg 

Tax 2020; KPMG 2020a). Although the use of AI can improve accounting judgments (Ding, Lev, 

Peng, Sun, and Varsarhelyi 2020), recent findings demonstrate that accounting professionals can 

be hesitant to rely fully on output from AI-based systems (e.g., Commerford, Dennis, Joe, Ulla 

2022), which could hamper the benefits realized from using AI in this setting. Accountants and 

auditors may be hesitant to rely on AI-generated estimates due to the accounting profession’s 

heavy focus on evidence and process documentation (SEC 2003) as well as their tendency to use 

a verification framework (Griffith, Hammersley, and Kadous 2015). Relatedly, regulators cite a 

lack of trust in AI due to concerns regarding AI’s process opacity and “black box problem” as the 
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“biggest challenge to the…adoption of AI tools” (CPA Canada and AICPA 2020, 6; PCAOB 

2023). Therefore, it is important to identify factors affecting accountants’ reliance on system 

output. In this study, we examine whether and how accountants’ reliance on output from an 

algorithmic system is jointly influenced by the degree of measurement uncertainty, as well as the 

system’s ability to adapt.  

In general, individuals are averse to uncertainty and attempt to reduce uncertainty in a 

variety of ways, including seeking advice from others (Sniezek and Van Swol 2001). Specifically, 

advice-taking literature finds that when individuals face tasks that exhibit greater uncertainty and 

difficulty, they are more likely to solicit and utilize advice from other individuals (Schrah, Dalal, 

and Sniezek 2006; Gino and Moore 2007). Consistent with this, accounting professionals are 

encouraged to seek advice from others to improve the quality of their judgments, especially those 

involving complex tasks that require expertise (e.g., asset valuations) (Ranzilla, Chevalier, 

Herrmann, Glover, and Prawitt 2011; PCAOB 2016). This suggests that as measurement 

uncertainty increases, accounting professionals should become more willing to incorporate advice 

from others into their judgments. 

 In addition, the advice-taking literature demonstrates that advice reliance is influenced by 

characteristics of the advisor (Bonaccio and Dalal 2006). In particular, a key component in advice 

utilization is whether individuals believe the advisor possesses the necessary skillset or 

competencies to assist with a given task (Birnbaum and Stegner 1979; Mayer, Davis, and 

Schoorman 1995; Harvey and Fischer 1997; Van Swol and Sniezek 2005; Pornpitakpan 2004). 

Relevant to our study, there is evidence that the relation between uncertainty and advice reliance 

differs when the advisor is an algorithm instead of a human. Specifically, Dietvorst and Bharti 

(2020) find that individuals become more resistant to relying on algorithmic advisors as 
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uncertainty increases. Importantly though, Dietvorst and Bharti (2020, 1303) argue that “an 

algorithm’s general approach to forecasting is constant, whereas human judges can change their 

approach at will.” This implies individuals believe that, to perform well, advisors should have the 

ability to adapt in times of high uncertainty, and that algorithms lack this ability. While some 

algorithms use a fixed set of factors and weights that remain constant, it is increasingly common 

for algorithmic systems to use AI that enables the system to adapt and learn over time (e.g., 

machine learning). Therefore, accountants and auditors will likely encounter systems that vary in 

the degree to which they can adapt (i.e., learning algorithms versus static algorithms).  

We propose that when there is significant uncertainty, accountants’ reliance on algorithmic 

advice will depend on whether the algorithm is one that can adapt to new information (i.e., a 

learning algorithm) or one that cannot (i.e., a static algorithm). We expect that in environments 

with relatively higher uncertainty, accountants will believe that a learning algorithm’s ability to 

adapt makes it better equipped to handle uncertainty relative to a static algorithm (Deloitte 2014; 

KPMG 2020c). Accordingly, we predict that accounting professionals will rely more heavily on 

advice provided by a learning algorithm relative to advice from a static algorithm, particularly 

when measurement uncertainty is higher versus lower.  

To test our prediction, we conduct two experiments. In our first experiment, we examine 

whether and how our prediction manifests in auditor judgments. We use a 2 × 2 between-subjects 

design, manipulating the degree of measurement uncertainty (higher versus lower) and the 

adaptability of the algorithmic advisor (learning algorithm capable of adapting versus static 

algorithm not capable of adapting). Auditor participants assume the role of an in-charge auditor 

on a financial statement audit and are tasked with evaluating the client’s impairment testing for an 

intangible asset (i.e., patent). Participants receive audit evidence from their firm’s algorithmic 
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system, which is designed to provide auditors with independent estimates for asset valuations. To 

manipulate algorithm adaptability, we inform auditors that their firm’s algorithm is either a 

learning algorithm or a static algorithm. Next, all participants receive the client’s fair value 

estimate for the patent and the algorithm’s fair value estimate, which differ from each other, as 

well as relevant macroeconomic information to assist with their assessment. To manipulate 

measurement uncertainty, auditors are provided with macroeconomic information indicating either 

higher or lower uncertainty around a key input for estimating the patent’s fair value. Auditors’ 

proposed audit adjustments serve as our dependent measure, as they reflect auditors’ relative 

weighting of the competing evidence, such that greater reliance on the algorithm’s estimate results 

in larger adjustments. Consistent with our theory-based expectations, we find that higher 

measurement uncertainty causes auditors to more heavily weight advice from a learning algorithm 

relative to a static algorithm, resulting in relatively larger proposed adjustments. We also find 

evidence that higher measurement uncertainty causes auditors to reduce their reliance on the advice 

of a static algorithm, which is consistent with Dietvorst and Bharti (2020). That said, we find no 

evidence of this effect when the advice comes from a learning algorithm instead of a static 

algorithm. Thus, auditors seem to appreciate an algorithm’s ability to adapt when uncertainty is 

heightened. 

In Experiment 2, we replicate our Experiment 1 findings in a non-audit setting where 

participants assume the role of an accounting manager and are asked to help with intangible asset 

impairment testing by estimating the fair value of a patent. In Experiment 2, participants provide 

an initial fair value estimate and then receive a fair value estimate from their company’s 

algorithmic software system. We then measure the degree to which participants adjust their 

estimate to be in accordance with the algorithm’s recommended fair value (i.e., a weight of advice 
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measure). Consistent with Experiment 1, we manipulate the degree of measurement uncertainty 

(higher versus lower uncertainty) and the adaptability of the algorithm (learning versus static 

algorithm). Again, we demonstrate that when there is higher measurement uncertainty, individuals 

rely more heavily on advice from learning algorithms relative to advice from a static algorithm. 

Supplemental analyses reveal that as measurement uncertainty rises, participants’ willingness to 

trust learning algorithm increases, which then leads to greater reliance on a learning algorithm’s 

advice. However, we find no evidence of this indirect effect when participants receive advice from 

a static algorithm. Thus, when there is greater uncertainty managers’ trust in the algorithm is 

conditional upon the algorithm’s ability to adapt. 

Our study has both theoretical and practical contributions. First, practitioners continue to 

voice concerns that as technologies’ capability continues to increase, its processes behave more 

like a “black box” which prevents individuals from understanding how the algorithm developed 

its output (EY 2018; CPA Canada and AICPA 2019; KPMG 2019). These concerns suggest that 

accounting professionals might be particularly hesitant to rely on learning algorithms, due to 

concerns about a lack of transparency. Contrary to these practitioner concerns, we find that under 

higher levels of uncertainty, both auditors and accounting managers rely more heavily on advice 

provided by learning algorithms compared to static algorithms. Thus, despite the black box 

concern, accounting professionals exhibit a preference for learning algorithms over static 

algorithms when the context is fitting (i.e., heightened measurement uncertainty). Our study 

suggests that there are settings in which it can be beneficial to highlight an algorithm’s adaptability. 

The results of our study should also help inform organizations’ considerations of how and when 

to implement systems that utilize advanced algorithms with varying abilities to adapt.  
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Secondly, we contribute to the growing literature around measurement uncertainty within 

complex accounting estimates. As demonstrated by recent global events (e.g., COVID-19 

pandemic, international conflicts, worldwide supply chain disruptions, rising inflation, and bank 

failures), it is important that accounting professionals are prepared to respond to uncertain 

conditions. Nevertheless, high measurement uncertainty remains a challenge for accounting 

professionals (Cannon and Bedard 2017; PCAOB 2017; Mard 2018; Griffith 2020; Pinello 2020). 

For example, research suggests that under greater uncertainty, auditors are less likely to adjust 

management’s estimates (Nelson, Elliott, and Tarpley 2002; Cannon and Bedard 2017), which 

raises the concern that measurement uncertainty enables audit clients to opportunistically achieve 

their preferred reporting outcomes. Consistent with this, we find that measurement uncertainty can 

cause auditors to propose smaller adjustments to clients’ estimates, but only when firm-provided 

contradictory evidence comes from an algorithm that is unable to adapt. In contrast, auditors are 

relatively more willing to adjust client estimates in highly uncertain settings with evidence from 

learning algorithms. In this way, our study demonstrates how the implementation of audit tools 

with adaptive capabilities might improve the quality of auditor judgments and lead to higher 

financial reporting quality. 

Lastly, we contribute to research examining human interactions with algorithms. Studies 

have shown that individuals are averse to relying on algorithms across various factors and decision 

domains (Dietvorst, Simmons, and Massey 2015; Dietvorst, Simmons, and Massey 2016; Castelo, 

Bos, and Lehmann 2019). Results suggest that individuals may be reluctant to rely on algorithmic 

advice in part due to concerns that algorithms lack the necessary level of expertise or capability 

(Castelo et al. 2019; Commerford et al. 2022). In addition, prior research suggests that reliance on 

algorithmic advice decreases as uncertainty increases (Dietvorst and Bharti 2020). However, our 
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study finds that algorithm adaptability is an important factor that can influence the weight 

individuals will place on algorithmic evidence in uncertain conditions. Overall, we demonstrate 

that reliance on algorithmic advice is contextually dependent, and that algorithm adaptability is an 

important technological feature that influences advice utilization, particularly when that capability 

is important to the judgment context (i.e., elevated uncertainty).  

2. Hypothesis Development 

2.1 Accounting Estimates and Algorithms 

Many accounting estimates require practitioners to make subjective, forward-looking 

assumptions in order to value and record financial statement balances (Bratten et al. 2013). For 

example, when determining the value for an intangible asset (e.g., a patent), one typically forecasts 

the future cash flows that the asset is expected to generate and then discounts those future cash 

flows into a present value at an assumed rate (KPMG 2017; Cavanaugh 2022). The inherent 

subjectivity and uncertainty involved in choosing inputs and predicting future outcomes can make 

it difficult to develop reliable accounting estimates (Bratten et al. 2013; Ding et al. 2020). 

Furthermore, even small changes to these assumptions can result in materially different valuations 

(Christensen et al. 2012). Likewise, it is challenging to evaluate the reasonableness of such 

estimates, as the “correct” value is often ambiguous or unknowable (Bratten et al. 2013; Griffith, 

Hammersley, Kadous, and Young 2015; Glover et al. 2017).  

To confront these challenges, companies and public accounting firms are developing and 

acquiring technologies that have the potential to help professionals manage uncertain economic 

conditions (Bloomberg Tax 2020; Apedo-Amah et al. 2021; Deloitte 2021b). For example, to deal 

with supply chain uncertainties associated with the COVID-19 pandemic, organizations across 

many industries adopted AI technology to synthesize macroeconomic information to better 
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forecast demand patterns and provide more relevant information (McKinsey 2020b). Similarly, 

financial service companies are developing AI technology capable of forecasting financial 

estimates, such as future cash flows (Deloitte 2019a). Relatedly, audit firms are also investing 

substantial resources into developing AI systems to assist auditors with the evaluation of complex 

accounting estimates (KPMG 2016; Shandwick 2016; Bughin, Chui, and McCarthy 2017; Deloitte 

2021c; Commerford et al. 2022). For instance, Deloitte has developed Omnia DNAV, an AI 

platform that uses advanced algorithms to help auditors evaluate investment funds by identifying 

areas of high risk, verifying key inputs, and producing independent valuations (Deloitte 2021a, 3; 

2021c, 19). Thus, accountants are (or soon will be) receiving input from systems that use advanced 

algorithms to provide recommendations and evidence around accounting estimates.  

2.2 Advice-taking and Uncertainty 

It is not uncommon for accounting professionals to seek advice from individuals who 

possess specialized knowledge and expertise (e.g., valuation specialists) when making judgments 

around complex estimates (Church and Shefchik 2012; Deloitte 2015; Griffith et al. 2015; Cannon 

and Bedard 2017; Griffith 2018; PCAOB 2017, 2020a, 2020b, 2020c, 2020d). Incorporating the 

advice of others is a rational approach when making difficult judgments, as advice-taking has been 

shown to increase judgment quality (Bonaccio and Dalal 2006). Importantly though, a growing 

body of research finds that individuals respond to algorithmic advisors and human advisors 

differently. Individuals are often hesitant to rely fully on the advice of algorithms (Promberger and 

Baron 2006; Yeomans, Shah, Mullainathan, and Kleinberg 2018; Dietvorst et al. 2015). This 

aversion to algorithmic advice has been demonstrated in a variety of judgment contexts (Burton, 

Stein, and Jensen 2020), including the accounting context. For example, Commerford et al. (2022) 
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find that, on average, auditors propose smaller adjustments to their client’s biased estimates when 

they receive contradictory evidence from an AI system instead of a human specialist.  

Furthermore, recent findings suggest this aversion to algorithmic advice is more 

pronounced in settings with high uncertainty. Specifically, Dietvorst and Bharti (2020) 

demonstrate that as uncertainty increases, individuals become even more resistant to relying on 

algorithmic advisors. This is in stark contrast to prior research showing that individuals become 

more willing to seek and utilize advice from others as tasks become more uncertain and difficult 

(Sniezek and Van Swol 2001; Gino and Moore 2007). Therefore, although emerging technologies 

have the potential to improve accounting judgments around uncertain estimates, practitioners’ 

hesitancy to incorporate algorithmic advice into their judgments (particularly when there is high 

uncertainty) might limit the realized benefits from this technology. 

2.3 Algorithm Adaptability 

Importantly though, Dietvorst and Bharti (2020) only consider individuals’ reliance on 

“static” algorithms, which are algorithms that remain constant and do not adapt. For instance, 

Dietvorst and Bharti (2020, 1303) state that “an algorithm’s general approach to forecasting is 

constant, whereas human judges can change their approach at will.” While many systems utilize 

static algorithms that function on defined rules that do not change, it is increasingly common for 

algorithms to possess the ability to adapt (Schatsky, Muraskin, and Gurumurthy 2015; Deloitte 

2017a; Deloitte 2018a; CPA Canada and AICPA 2019; Deloitte 2019a; Deloitte 2019b). For 

example, machine learning is a type of artificial intelligence that involves building algorithms and 

models that can automatically learn and improve from experience or data. It uses statistical and 

mathematical techniques to find patterns and relationships in data, and then uses these patterns to 

make predictions or decisions about new data. Machine learning algorithms can develop models 
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that contain millions of parameters or rules without human intervention or explicit instructions on 

how to perform a task (Bleicher 2017; EY 2018; Deloitte 2019a). Companies are eager to integrate 

AI technology into their processes not only for potential operational efficiencies, but also for the 

technology’s ability to enhance the quality of accounting information (Raschke, Saiewitz, 

Kachroo, and Lennard 2018; Ding et al. 2020; KPMG 2020a; KPMG 2020b). Thus, accountants 

are likely to encounter algorithms that vary in their ability to adapt to new data and environments.  

Advice utilization is often a function of whether individuals perceive the advisor to be 

capable of completing the task (Mayer et al. 1995; Van Swol and Sniezek 2005; Bonaccio and 

Dalal 2006). For example, individuals are more willing to rely on advice from others when they 

have greater task-relevant expertise and knowledge (Birnbaum and Stegner 1979). An algorithm’s 

ability to adapt is a characteristic that might influence accounting professionals’ willingness to rely 

on algorithmic advice. On one hand, the accounting setting is one in which there is a heightened 

need to justify, verify, and document information (Koonce, Anderson, and Marchant 1995; 

Peecher 1996; FASB 2018). For example, auditors are required to document procedures performed 

and the evidence obtained in sufficient detail to provide a clear understanding of the conclusions 

reached (PCAOB 2022). As such, accounting professionals might prefer to use static algorithms 

over learning algorithms, as static algorithms operate in a consistent and predictable manner, 

offering greater ease of documentation (CPA Canada and AICPA 2020). On the other hand, 

accounting professionals might believe a learning algorithm’s adaptability to be a favorable 

characteristic as this allows the algorithm to incorporate new information and improve over time, 

thereby enhancing the quality of the evidence obtained. 

Importantly, in settings with high levels of uncertainty, the ability to adapt is a particularly 

desirable advisor characteristic. For example, firms note that they seek out leadership that will 
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undertake dynamic and adaptive strategies because firms view this approach to be more sustainable 

in uncertain and volatile business environments. Hence, companies consider a leader’s adaptability 

to be a “competitive advantage” in times of uncertainty (Reeves and Deimler 2011, 137). In the 

same way, accountants likely believe learning algorithms are better equipped to handle uncertainty 

than static algorithms (Deloitte 2014; KPMG 2020c). Therefore, we expect the relationship 

between measurement uncertainty and the degree to which accounting practitioners utilize advice 

from an algorithm depends on whether the algorithm is capable of adapting. Specifically, we 

expect that under heightened levels of measurement uncertainty, accounting practitioners will be 

more likely to exhibit a preference for advice from learning algorithms relative to advice from 

static algorithms. Accordingly, we propose the following interaction hypothesis:  

Hypothesis:  Individuals will exhibit a stronger preference for learning over static 
algorithms when measurement uncertainty is higher versus lower.  

 
 
3. Experiment One: Audit Setting 

3.1 Participants  

We obtained participants with the assistance of the Center for Audit Quality (“CAQ”) and 

through the authors’ personal contacts.1 We provided the CAQ with a recruitment email, which 

invited auditors to participate in the study and included a hyperlink to the online experiment. CAQ 

personnel forwarded the email to contacts at each of the participating firms. We assured 

participating auditors that their identity and the identity of their firm would be confidential. We 

used a similar process when recruiting participants through personal contacts. 

 
1 Both experiments in this study were approved by the Institutional Review Board (IRB) for Human Participants at 
the university where administration of the study was completed. 
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Our final sample includes responses from 100 experienced auditors.2 As reported in Table 

1, participants have an average of 7.49 years of public accounting experience and report they are 

relatively likely to provide input into decisions regarding proposed audit adjustments (mean of 

5.71 on a scale from 1 = “Not at All Likely” to 7 = “Highly Likely”). Participants also report 

spending approximately 51.05% of their time working on audits of public companies. Thus, these 

auditors possess an appropriate level of experience for evaluating client estimates (Griffith et al. 

2015; Commerford et al. 2022).   

[Insert Table 1] 

Experimental Design 

To test our theory, we conduct a 2 × 2 between-participants experiment, manipulating the 

degree of measurement uncertainty around a client estimate (i.e., higher versus lower measurement 

uncertainty). Participants receive relevant audit evidence from their firm’s proprietary valuation 

system, and we manipulate whether that system can adapt (i.e., employs static versus learning 

algorithms). 

Participants are instructed to assume the role of an in-charge auditor on the financial 

statement audit of Heartland Resource Corporation (HRC), a publicly traded oil and gas company. 

Auditors learn that HRC acquired a patent for a state-of-the-art drill technology. However, recent 

changes in the business climate (i.e., competing drill technology being developed) required HRC’s 

management to re-evaluate the patent for possible impairment. After conducting a recoverability 

test, HRC’s management determined that the patent value was impaired and estimated the fair 

value of the patent to determine the amount of the impairment loss. Ultimately, HRC booked a 

 
2 We received 122 complete responses. However, we instruct participants to complete the case in one-sitting of 
uninterrupted time. Consistent with prior literature, we exclude 22 participants who were inattentive and/or distracted 
(i.e., spent over 15 minutes on a single screen) and did not follow these instructions (Hammersley and Ricci 2021). 
As a result, our final sample includes responses from 100 auditors. 
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$13.2 million impairment loss related to the patent. Participants are asked to consider the audit 

evidence and provide a judgment pertaining to the adequacy of this impairment loss. 

Case details indicate that their firm developed a proprietary software system called the E-

Val system that assists with complex valuations. Participants are provided with a description of 

this system and how it was developed. In all conditions, auditors are informed that their firm 

guidance indicates that the E-Val system is considered an approved source of evidence and that 

the firm has invested significant resources developing and testing the system. Furthermore, the 

firm has partnered with a large international technology company with leading experts in 

developing prediction models to help develop the system.3 Participants in the learning algorithm 

condition are informed that the E-Val system utilizes algorithms that can adapt and improve over 

time. The use of learning algorithms allows the E-Val system to discover new predictors and 

identify different predictor weights to improve the model. In contrast, auditors in the static 

algorithm condition read that the E-Val system utilizes algorithms that are fixed and stay constant 

when developing fair value estimates. See Appendix A which presents the experimental 

manipulation of algorithm adaptability.  

Auditors learn that differences between the E-Val system’s and HRC’s estimate of the 

patent impairment loss indicate a potential material audit difference that would reduce earnings by 

$10.5 million. Case details indicate that the discrepancy is primarily attributed to differences in 

projected patent revenue growth rates which affect future cash flow generated from royalty 

payments. Specifically, the E-Val system expects slower economic growth over the next 10 years 

 
3 When describing the algorithm, we include statements in all conditions to equalize the quality and acceptability of 
the algorithm as to not manipulate the learning algorithm as simply a “better” algorithm relative to the static algorithm. 
For example, in both static and learning algorithm conditions we inform participants that their firm partnered with a 
large international technology company with leading experts to develop the algorithm. Additionally, participants learn 
that their firm gathered input from valuation specialists with expertise in determining fair value of assets and liabilities 
and that their firm has invested significant resources developing and testing the algorithm. In both conditions, 
participants are told explicitly that the algorithm is an approved source of audit evidence.  
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resulting in lower revenue growth rates than what HRC’s management projected. Auditors receive 

HRC’s discounted cash flow analysis along with a summary of differences between the E-Val 

system’s key inputs into the discounted cash flow model and HRC’s key inputs.  

Auditors are also provided with additional evidence to assist them with assessing the 

reasonableness of projected revenue growth rates. Specifically, auditors are presented with natural 

gas price projections for the next ten years along with analyst comments. Auditors are informed 

that forecasted natural gas price is a major macroeconomic input that is a good indicator for 

projected patent-related sales revenues and the related estimated fair value of the patent. To 

manipulate measurement uncertainty, we provide auditors with a graph of natural gas price 

forecasts and corresponding analysts’ quotes that exhibit either higher or lower uncertainty around 

future natural gas prices. Specifically, the forecast graph contains four price indices’ projections 

of future natural gas prices. In the higher future uncertainty condition, the four price indices exhibit 

higher volatility and divergence in price projections. In the lower future uncertainty condition, the 

four price indices exhibit lower future volatility and price projections exhibit a more linear 

pattern.4 See Appendix B which presents the experimental manipulation for measurement 

uncertainty.  

After reading the case, auditors recommend a proposed adjustment to HRC’s patent value 

and impairment loss. Larger (smaller) proposed adjustments indicate greater (lower) reliance on 

evidence provided by their firm’s E-Val system (Commerford et al. 2022). Lastly, auditors 

complete a post-experimental questionnaire, which includes demographic information. 

 
4Although the price indices exhibit different patterns between the two conditions, the average natural gas price 
projection each year is the same across conditions. For example, the average natural gas price for 2022 for both higher 
and lower uncertainty conditions is $2.84. Additionally, the average projected growth rate per year is equal across 
conditions (i.e., average price increase from year 2022 to 2023 is 1.4% for both conditions).  
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3.2 Results 

3.2.1 Manipulation Checks 

 To evaluate whether we successfully manipulated measurement uncertainty, we ask 

auditors to assess, “how certain or uncertain are future natural gas prices” (1 = “Very Certain” to 

7 = “Very Uncertain”). Auditors in the higher uncertainty conditions (mean = 5.71) assessed future 

natural gas prices as more uncertain than participants in the less uncertain condition (mean = 3.38; 

t98 = 9.50, p < 0.01, untabulated), indicating that our manipulation of uncertainty was effective.5 

To assess whether we successfully manipulated the algorithm adaptability, we asked participants 

to rate “which description best describes your company’s E-Val system” (1 – “static algorithms 

and prediction methods that are fixed and do not adapt over time” and 7 – “learning algorithms 

and prediction methods that adapt and improve over time”). Participant responses in the learning 

algorithm condition (mean = 5.79) were higher than those in the static algorithm condition (mean 

= 2.58; t98 = 8.94, p < 0.01, untabulated). 

3.2.2 Test of Hypothesis 

To test our hypothesis, we estimate a 2 × 2 ANCOVA with adaptability of the algorithm 

and degree of uncertainty as independent variables and proposed adjustments as the dependent 

variable. We also include how closely participants followed natural gas prices as a covariate in the 

model.6 Table 2, Panel A provides descriptive statistics by experimental condition, Figure 1 graphs 

these cell means, and Table 2, Panel B reports the results of the ANCOVA model.  

 
5 Consistent with our directional prediction, all reported p-values are one-tailed equivalents, unless otherwise noted. 
6 Data collection occurred throughout 2021. However, in the summer of 2021, global natural gas prices began to rise 
rapidly, which was widely reported in news outlets. Thus, there was a significant change in relevant macroeconomic 
conditions that occurred during our data collection, which could add variation and noise to our results. Controlling for 
the degree to which individuals followed natural gas prices allows us to control for a source of variation on our 
dependent measure and better examine our hypothesized effects (Piercey 2023). To control for this, we include a 
covariate in the model capturing how closely participants follow natural gas prices.  Specifically, we ask participants 
how closely they have tracked natural gas prices in the past 12 months on a scale from 1 = “Not Closely at All” to 7 
= “Extremely Closely.”  
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[Insert Figure 1 and Table 2] 

Our hypothesis predicts that accounting practitioners are more likely to exhibit a preference 

for advice from learning algorithms relative to advice from static algorithms when measurement 

uncertainty is higher versus lower. Consistent with our hypothesis, we find a significant interaction 

between algorithm adaptability and measurement uncertainty (F1,95 = 2.96; p = 0.04). We perform 

follow-up simple effects (Table 2, Panel C) to further test the nature of the interaction. Results 

show that, when measurement uncertainty is higher, participants proposed larger audit adjustments 

when audit evidence comes from a system using learning algorithms relative to system that uses 

static algorithms (6.59 versus 4.97 million; t1,95 = 1.56, p = 0.06). However, when measurement 

uncertainty is lower, the effect of algorithm adaptability is nonsignificant (5.74 million versus 6.73 

million; t1,95 = 0.91, p = 0.37, two-tailed). These results are consistent with the notion that higher 

uncertainty, auditors exhibit a preference for evidence from learning algorithms over evidence 

from static algorithms. In contrast, we find no evidence that algorithm adaptability affects auditors’ 

reliance in low measurement uncertainty environments.  

Interestingly, we also observe that when measurement uncertainty increases, auditors rely 

less on the evidence from static algorithms and propose smaller audit adjustments (6.73 million 

versus 4.97 million; t1,95 = 1.68, p = 0.10, two-tailed). This is consistent with prior research 

indicating that aversion to algorithmic advice increases as uncertainty increases (Dietvorst and 

Bharti 2020). However, increased measurement uncertainty does not lead to smaller adjustments 

in the learning algorithm condition (5.74 million versus 6.59 million; t1,95 = 0.78, p = 0.44, two-

tailed). Our results suggest auditors believe that as measurement uncertainty increases, static 

algorithms become less acceptable source of advice, while learning algorithms are viewed as 
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suitable for both degrees of uncertainty. Collectively, these results provide strong support for our 

hypothesis. 

4. Experiment Two: General Accounting Setting  

The purpose of our second experiment is to test the generalizability of our findings and to 

use a more direct measure of reliance on algorithmic advice. In Experiment 1, we examine our 

theory in an audit context and we infer reliance on algorithmic advice through participants’ 

proposed adjustments. In Experiment 2, we examine whether we can replicate our findings in a 

more general accounting setting where individuals are developing and reporting their own 

accounting estimate rather than deciding how to weight contradictory information from two 

competing sources, as is often the case in audit contexts (Commerford et al. 2022).  

One of the key findings in advice-taking literature is that individuals tend to discount 

advice, especially if they are psychologically tied to their estimate (Yaniv and Kleinberger 2000; 

Yaniv 2004; Bonaccio and Dalal 2006; Baer and Brown 2012). Notably, Experiment 1 participants 

are not explicitly asked to develop their own estimate prior to receiving advice, which could 

possibly have increased their willingness to incorporate algorithmic advice. In contrast, we ask all 

Experiment 2 participants to make an estimate prior to receiving any algorithmic advice. Then, 

after receiving advice from an algorithm, participants are given an opportunity to revise their 

estimate. This allows us to observe a more direct measure of reliance on algorithmic advice 

compared to the dependent measure utilized in Experiment 1 (i.e., proposed adjustments).  

4.1 Participants  

We recruited participants through Prolific, an online crowdsourcing platform, and our final 

dataset contains 145 responses.7 At a minimum, participants are required to have an undergraduate 

 
7 Given that participants were compensated for their completion of the survey, our concern in regard to inattentiveness 
is that participants would complete the materials too quickly and not attend to the information presented. Thus, we 
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business degree. In exchange for completing this study, we paid each participant a fixed wage of 

$1.75. Participants had a reasonable understanding of accounting and finance as, on average, they 

completed four accounting and finance courses. Furthermore, all participants have an 

undergraduate degree in the field of business or economics. See Table 3 for demographic 

information for the final sample. On average, participants are 29.43 years old, have some 

experience with making financial forecasts, and are comfortable relying on technology. 

[Insert Table 3] 

Prolific workers with general business experience are appropriate participants for our study 

because we are examining a psychological phenomenon that does not necessarily require extensive 

prior knowledge or expertise. Although the experimental task involves estimating the fair value of 

a patent, the task is simplified by asking participants to estimate sales forecasts related to the patent 

(i.e., a key input in a discounted cash flow model).8,9 Thus, given that a basic familiarity with 

accounting and business was required, we believe the knowledge base of our participants matches 

the requirement of the task and the goals of this research (Libby, Bloomfield, and Nelson 2002).  

 
develop a minimum 9-minute cutoff as a conservative estimate of how long participants should have taken if they 
were reading the case details. For silent reading of non-fiction, most adults fall in the range of 175-300 words per 
minute (wpm) (Andrews 2010; Brysbaert 2019). We use a conservative estimate of 300 wpm as the “fastest” rate at 
which individuals can read case information while attending to the case details. On average, there are 2,689 words in 
each condition, which should take the participant approximately 9 minutes to read (i.e., 2,689 words divided by 300 
wpm). Participants who did not meet the 9 minutes minimum criteria were excluded, resulting in 35 participants being 
excluded. Retained participants spent a median of 14 minutes on the case, yielding an effective hourly wage of $7.48. 
8 Participants are provided a discounted cash flow Microsoft Excel spreadsheet to assist with the calculation of the 
patent fair value (see Appendix C, Panel A). The discount rate and useful life of the patent were already determined 
and prepopulated in the spreadsheet. Additionally, once participants entered their future cash flow predictions into the 
cells, the spreadsheet automatically discounted the cash flow to its present value and provided the participant with 
their fair value estimate of the patent based on their cash flow predictions (see Appendix C, Panel B). 
9 We are primarily interested in participants’ willingness to rely on algorithmic advice under different conditions. To 
the extent that participants are not familiar with this task, this should only serve to shift participants’ advice reliance 
upward in all conditions (Logg, Minson, and Moore 2019). 
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4.2 Experimental Design 

In Experiment 2, participants are instructed to assume the role of a manager at Heartland 

Resource Corporation (HRC). Case details inform participants that HRC’s CFO tasked them with 

helping estimate the fair value of the patent as part of testing that intangible asset for impairment. 

Specifically, manager participants are asked to project patent-related sales revenue, a key input for 

estimating the fair value of a patent using a discounted cash flow model. Next, participants are 

provided with additional information to assist with the projection of patent-related sales revenue. 

Consistent with Experiment 1, participants are presented with natural gas price projections for the 

next ten years along with analyst comments, which contain our measurement uncertainty 

manipulation. Following this, participants are provided a discounted cash flow spreadsheet where 

they submit their projections of patent-related sales revenue cash flow for each year of the patent’s 

useful life. See Appendix C, Panel A for the spreadsheet provided to all participants to assist with 

the discounted cash flow calculation. Participants enter in their projected future cash flows by 

typing their estimates into the empty yellow boxes in the spreadsheet. The spreadsheet 

automatically calculates the fair value of the patent by discounting the participant’s projected 

future cash flows. See Appendix C, Panel B for an example of the spreadsheet’s calculation of the 

patent fair value. At this point, participants submit their initial estimate of the patent value.  

Next, all participants learn that their firm has developed a proprietary software system (i.e., 

the E-Val system) to assist with complex valuations. Similar to Experiment 1, the description of 

the algorithm contains our algorithm adaptability manipulation.10 Following this, participants 

receive the E-Val system’s estimate of the patent fair value. To ensure the system’s estimate differs 

meaningfully from the participants’ estimate in the same direction in all conditions, the system 

 
10 Similar to Experiment 1, all participants are informed that their company considers the E-Val system to be an 
approved source of information and its models are reviewed by the company. 
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estimate provided to participants is always 20% less than the participant’s initial fair value 

estimate.11 After reviewing the advice, participants submit their final estimate (i.e., adjusted 

estimate) of the patent value and complete a post-experiment questionnaire.  

Our primary dependent variable is advice utilization, which is calculated as weight of 

advice (WOA) (e.g., Önkal et al. 2009; Kadous, Leiby, and Peecher 2013). Expressed 

mathematically:  

 

 

WOA captures the extent to which an individual incorporates the E-Val system’s estimate 

into their final estimate. WOA values can range from 0 to 1.12 If participants’ final estimate is 

equal to their initial estimate, then WOA would equal 0 and represents no weighting and a 

complete discounting of the E-Val system’s advice. In contrast, if there is a complete shift of the 

initial estimate to the E-Val system’s estimate, WOA would equal 1, which represents full 

weighting of the E-Val system’s advice. Partial reliance on the E-Val system’s estimate results in 

intermediate values ranging between 0 and 1. For example, a WOA of 0.50 reflects situations 

where participants average the E-Val system’s estimate with their initial estimate. 

 
11 Prior advice-taking literature has found that weight placed on advice decreases as the distance between the advice 
and initial opinion increases (Yaniv 2004). Additionally, research has found that individuals are more willing to take 
advice when that advice puts individuals in a more favorable position or supports their initial advice (Schmidt 2001; 
Wheeler and Arunachalam 2008). To control for these effects, we keep the relative distance equal in all conditions, 
by setting the E-Val system’s estimate as 20% less than the participant’s initial fair value estimate. 
12 Following previous research, we truncate the WOA value to 1 if the participant “overshoots” the advice (i.e., 
participants’ final estimate is less than the E-Val system’s estimate) (Gino and Moore 2007; Gino, Shang, and Croson 
2008). 
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4.3 Results 

4.3.1 Manipulation Checks 

 To evaluate whether we successfully manipulated measurement uncertainty and algorithm 

adaptability, we ask participants the same questions used in Experiment 1. Participants in the 

higher uncertainty conditions (mean = 5.83) assessed future natural gas prices as more uncertain 

than participants in the less uncertain condition (mean = 3.11; t143 = 12.00, p < 0.01, untabulated). 

We also asked participants to characterize the E-Val system’s use of algorithms and adaptability 

on a seven-point scale (1= “static algorithms and prediction methods that are fixed and do not 

adapt over time” and 7 = “learning algorithms and prediction methods that adapt and improve over 

time”). Participant responses are higher in the learning algorithm condition (mean = 6.01) than in 

the static algorithm condition (mean = 2.16; t143 = 15.25, p < 0.01, untabulated). Results indicate 

our manipulations of measurement uncertainty and algorithm adaptability were effective. 

 To further examine whether the adaptive capability of the algorithm manipulation was 

successful, we ask the participants to assess the degree to which they agree or disagree with the 

following statement, “The E-Val system responds the same way under the same conditions over 

time” (1 = “Strongly Disagree” to 7 = “Strongly Agree”). Because learning algorithms have the 

capability to adapt overtime while static algorithms are fixed and stay constant, we expect 

individuals in the static algorithm condition to report higher values (i.e., strongly agree) compared 

to individuals in the learning algorithm condition. We find further evidence of a successful 

manipulation of algorithm adaptability as participants in the static algorithm condition (mean = 

5.42) were more likely to agree that the E-Val system responds the same way over time than 

participants in the learning algorithm condition (mean = 3.66; t143 = 5.06, p < 0.01, untabulated).  



22 
 

4.3.2 Test of Hypothesis 

To test our hypothesis, we estimate a 2 × 2 ANOVA with algorithm adaptability and degree 

of uncertainty as independent variables and WOA as the dependent variable. Table 4, Panel A 

provides descriptive statistics by experimental condition, Figure 2 graphs these cell means, and 

Table 4, Panel B reports the results of the ANOVA model.  

[Insert Figure 2 and Table 4] 

Consistent with our hypothesis, we find a significant interaction between algorithm 

adaptability and measurement uncertainty (F1,141 = 3.33; p = 0.04). We perform follow-up simple 

effects (Table 4, Panel C) and results show that the effect of algorithm adaptability is significant 

when measurement uncertainty is higher (0.75 versus 0.63 WOA; t1,141 = 2.10, p = 0.02), but not 

when measurement uncertainty is lower (0.62 versus 0.64 WOA; t1,141 = 0.48, p = 0.64, two-

tailed).13 Consistent with our expectations, and with our findings in Experiment 1, when 

measurement uncertainty is higher, participants rely on the advice of learning algorithms more 

heavily than the advice of static algorithms. Thus, participants seem to prefer advice from learning 

algorithms over static algorithms when there is greater uncertainty.  

 
13 Our interaction hypothesis predicts that there will be significantly greater reliance on learning algorithms relative 
to static algorithms when there is higher (versus lower) measurement uncertainty. Thus, our main interest is if and 
how the simple effect of algorithm adaptability (learnings versus static) varies based on the degree of measurement 
uncertainty present. Nevertheless, it is interesting that the simple effects relating to measurement uncertainty differ 
between Experiment 1 and Experiment 2. That is, in Experiment 1, measurement uncertainty reduces auditors’ reliance 
on static algorithms. In contrast, in Experiment 2, measurement uncertainty increases participants reliance on learning 
algorithms. Importantly, there are contextual and methodological differences across these two experiments that might 
contribute to this finding. Experiment 1 is set in an audit context where auditors receive contradictory evidence from 
two different sources. Experiment 2 participants, however, develop their own estimate prior to receiving algorithmic 
advice. Thus, when creating their estimate, participants may have developed a sense of ownership in the estimate and 
be more reluctant to accept algorithmic advice, which is only overcome when the algorithm’s capabilities are 
particularly well-matched to the task.   
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4.3.3 Additional Analysis: Moderated Mediation Analyses 

 In this section, we explore whether individuals’ trust in the algorithm is the mechanism 

that influences the weight individuals place on algorithmic advice. Prior literature has found that 

individuals’ trust in advisors is positively related to advice-taking (Bonaccio and Dalal 2006; 

Jungermann and Fischer 2005). Specifically, advice utilization is a decision based on an 

individual’s willingness to trust in others (i.e., a judgment), which is a behavioral intention that 

reflects a willingness to rely on “the behavior of a person in order to achieve a desired but uncertain 

objective in a risky situation” (Giffin 1967, 105; Coleman 1990; Moorman, Zaltman, and 

Deshpande 1992; Mayer et al. 1995). As such, research suggests that for an individual (i.e., the 

trustor) to exhibit a need and willingness to trust an advisor, there must be some degree of 

uncertainty involved in the situation or task (Coleman 1990; Sniezek and Van Swol 2001). 

Although higher uncertainty may increase an individual’s willingness to trust others, trust is also 

dependent on whether the individual perceives the advisor has the necessary capability and skillset 

to provide assistance (Barber 1983; Mayer et al. 1995; Sniezek and Van Swol 2001). Accordingly, 

we expect that trust formation is dependent on both the degree of uncertainty of a task as well as 

whether the advisor possess a skillset capable of handling uncertainty and that greater trust in the 

advisor has a positive effect on advice utilization. 

If results are consistent with theory, we expect a significant positive indirect effect of 

measurement uncertainty on advice utilization through trust in the algorithm when evidence is 

provided by a learning algorithm. In contrast, we do not expect this indirect effect to be significant 

when evidence is provided by a static algorithm. That is, we do not expect accounting professionals 

to develop trust in an algorithm that is believed to be ill-equipped to handle heightened uncertainty. 

Collectively, we expect a positive model estimate for our moderated mediation index which 
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quantifies the linear association between the indirect effect and moderator of that effect (Hayes 

2022).  

Following the procedures described by Hayes (2022), we conduct a moderated mediation 

analysis using the SPSS PROCESS macro (model 8) with participants’ willingness to trust in the 

algorithm as the mediator.14 To test for indirect effects, we run 10,000 bootstrapped confidence 

intervals with resamples of data with replacement. As shown in Figure 3, we find evidence 

supporting our expectations. First, we find that the index of moderated mediation is significant (95 

percent of the bootstrapped estimates are greater than 0.002), which indicates that the indirect 

effects estimated at the two levels of algorithm adaptability are significantly different from each 

other. Furthermore, we find that Trust in Algorithm mediates the relationship between 

Measurement Uncertainty and Weight of Advice in the learning algorithm conditions, but not in 

the static algorithm conditions (see Figure 3). These results reveal that when auditors receive 

advice from a learning algorithm, higher future uncertainty causes individuals to exhibit a greater 

willingness to trust in the learning algorithm, and that greater willingness to trust increases the 

degree to which individuals incorporate algorithmic advice into their final estimate (i.e., 95 percent 

of the bootstrapped estimates are greater than 0.003). However, when the algorithm is static, higher 

future uncertainty does not significantly increase an individual’s willingness to trust the algorithm 

(i.e., the confidence interval includes zero; -0.048 to 0.014). This is consistent with our expectation 

 
14 We utilize a three-item scale to capture individuals’ willingness to trust in the algorithm. Specifically, we ask 
participants to assess the following three statements: “The E-Val system is trustworthy”, “When I am uncertain about 
a decision, I believe the E-Val system rather than myself”, and “I believe advice from the E-Val system even when I 
don’t know for certain that it is correct” on a 7-point scale with endpoints Strongly Disagree (1) to Strongly Agree (7) 
(Madsen and Gregor 2000). The first item directly assesses participants’ perception of the E-Val system’s 
trustworthiness. The second and third items are derived from the human-computer trust scale that Madsen and Gregor 
(2000) develop to measure faith, which is trust in a system’s capability to “perform even in situations where it is 
untried”. We selected these two items they are particularly applicable to a setting in which a system is predicting future 
outcomes and events, as is the case in our experimental context. The Cronbach’s alpha for these three items is 0.69, 
indicating they reliably measure a single underlying construct (Kline 2016; Field 2018). Therefore, we use the average 
of the three measures, which we label as Trust in Algorithm, as the mediator in our analyses. 
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that algorithm adaptability is an important factor in the development of one’s willingness to rely 

on algorithmic advice, particularly in highly uncertain environments.  

[Insert Figure 3] 

5. Conclusion 

We provide experimental evidence on how measurement uncertainty and algorithm 

adaptability affect the weight accounting practitioners place on advice from algorithms. In multiple 

accounting contexts, we predict and find that when individuals encounter higher measurement 

uncertainty, they more heavily weight advice from learning algorithms compared to advice from 

static algorithms. We demonstrate this effect in both an audit context and in a financial reporting 

context. Furthermore, we also find that individuals’ willingness to trust an algorithm mediates the 

joint effect of measurement uncertainty and algorithm adaptability on advice utilization. Our 

findings should be informative to companies, including public accounting firms, as they continue 

to implement emerging technologies in their organizations.  

Our study makes several important contributions. First, our study provides insights on 

relevant factors affecting accounting professionals’ reliance on emerging technologies. Although 

learning algorithms are inherently more capable than static algorithms, practitioners have voiced 

concerns regarding an inability to trust learning algorithms due to a lack of understanding 

regarding how these algorithms develop recommendations (i.e., decision making processes), 

which is commonly referred to as the “black box” concern (CPA Canada and AICPA 2019). Given 

that documentation and justification for accounting choices are important features of the 

accounting profession (Koonce et al. 1995; Kadous et al. 2013; Deloitte 2015), accounting 

professionals might be hesitant to rely on learning algorithms, as they can be more difficult to 

understand and explain to others. This could lead to a preference for advice from static algorithms, 
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which are arguably less sophisticated than learning algorithms. However, contrary to these 

practitioner concerns, our results show that in contexts with higher measurement uncertainty, 

accounting professionals are more willing to rely on advice from learning algorithms compared to 

static algorithms. Based on our findings, it is somewhat encouraging that accounting professionals 

demonstrate a willingness to rely on advanced algorithms in contexts where the algorithm is most 

likely to improve their judgments – when measurement uncertainty is relatively high.  

Second, we contribute to the growing literature around measurement uncertainty within 

complex accounting estimates. High measurement uncertainty continues to be a challenge for 

accounting professionals (Cannon and Bedard 2017; PCAOB 2017; Mard 2018; Griffith 2020; 

Pinello 2020). Consistent with research suggesting that increased uncertainty reduces the 

likelihood that auditors constrain their clients’ aggressive estimates (Nelson, Elliott, and Tarpley 

2002; Cannon and Bedard 2017), we find that measurement uncertainty can cause auditors to 

propose smaller adjustments to clients’ estimates. Importantly though, we find this relation only 

when firm-provided contradictory evidence comes from an algorithm that is unable to adapt. In 

contrast, auditors are relatively more willing to adjust client estimates in highly uncertain settings 

with evidence from learning algorithms. This demonstrates how the implementation of new audit 

tools with adaptive capabilities have the potential to improve the quality of auditor judgments, and 

thus, financial reporting quality.  

Lastly, we contribute to the broader literature examining human interactions with 

algorithms. In general, this literature finds that individuals are averse to relying on algorithms 

across in a variety of decision domains (Dietvorst et al. 2015; Dietvorst et al. 2016; Casteloet al.  

2019). Recent findings suggest that uncertainty can amplify this aversion to algorithmic advice 

(Dietvorst and Bharti 2020). Consistent with this, we find evidence that measurement uncertainty 
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can reduce auditors’ reliance on advice from static algorithms. However, we also find that 

highlighting an algorithm’s ability to adapt mitigates this effect. Thus, the relation between 

uncertainty and algorithmic reliance appears to be more nuanced than previously suggested by 

prior findings. Overall, we demonstrate that reliance on algorithmic advice is contextually 

dependent, influenced by an algorithm’s features and capabilities, as well as the context in which 

the algorithm is being used. This finding is also informative to organizations as they continue to 

design and implement AI-based systems to assist individuals with judgment-based tasks. Our 

findings suggest that organizations can promote reliance on their technological investments by 

highlighting features and characteristics of the systems that are important to the individual task.  
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APPENDIX A 

Experimental Manipulation for Algorithm Adaptability 
 
Panel A: Description of Learning Algorithm 
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Panel B: Description of Static Algorithm 
 

 
 
 
Note: The purpose of Appendix A is to illustrate the information provided to participants in the learning and static 
algorithm conditions.  
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APPENDIX B 

Experimental Manipulation for Measurement Uncertainty 
 
Panel A: Higher Measurement Uncertainty 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Lower Measurement Uncertainty 
 

 
 
 
 
 
 

 
 
Note: The purpose of Appendix B is to illustrate the information participants were provided in the higher and 
lower measurement uncertainty conditions.  
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APPENDIX C 

Discounted Cash Flow Spreadsheet 
 

Panel A: Discounted Cash Flow Spreadsheet Provided to All Participants  
 

 
 
Panel B: Example of Discounted Cash Flow Spreadsheet Filled Out 
 

 
 

Note: The purpose of Appendix C is to illustrate the discounted cash flow spreadsheet that participants filled out 
to estimate the fair value of the patent. Participants were first provided a spreadsheet where they were instructed 
to fill in the empty yellow boxes with their projected patent-related sales revenue growth rate each year. When 
participants finish submitting their projections, the spreadsheet provides the fair value of the patent in the blue 
box, which is based on their input. 
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FIGURE 1 
Observed Effects of Measurement Uncertainty and Algorithm Adaptability 

on Participants’ Proposed Audit Adjustment 
 

   
 
Note: Figure 1 graphs the means for the main dependent variable, proposed audit adjustment, by experimental 
condition, as reported in Table 2, Panel A. See notes to Table 2 for descriptions of dependent variable and 
independent factors. Error bars are displayed and indicate one standard error from the mean. 
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FIGURE 2 
Observed Effects of Measurement Uncertainty and Algorithm Adaptability 

on Participants’ Weight of Advice 
 
     

 

 

Note: Figure 2 graphs the means for the main dependent variable, WOA, by experimental condition, as reported in 
Table 4, Panel A. See notes to Table 4 for descriptions of dependent variable and independent factors. Error bars are 
displayed and indicate one standard error from the mean. 
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FIGURE 3 
Moderated Mediation Analysis 

 
 

 
 

 
Note: The above diagram represents a moderated mediation model (Hayes 2022). We use a Model 8 with one 
mediator. Specifically, this model depicts the effect of measurement uncertainty and algorithm adaptability on weight 
placed on algorithm’s advice (i.e., Weight of Advice) and that interactive effect is expected to operate through 
willingness to trust in the algorithm. Measurement Uncertainty equals 1 (0) for higher (lower) measurement 
uncertainty condition. Algorithm equals 1 (0) for learning (static) algorithm condition. To capture participants’ 
willingness to trust in the algorithm, we asked participants to assess the following three statements, “When I am 
uncertain about a decision, I believe the E-Val system rather than myself”, “I believe advice from the E-Val system 
even when I don’t know for certain that it is correct”, and “The E-Val system is trustworthy” on a 7-point scale with 
endpoints Strongly Disagree (1) to Strongly Agree (7). We take the average of these three items to measure an 
individual’s willingness to trust in an algorithm. All continuous variables are mean-centered to facilitate interpretation 
of the coefficients.  
a We use 10,000 bootstrapped resamples of data with replacement to estimate the path coefficients and to test the 
significance of the indirect effects. Given the directional expectation for the indirect effect though Trust in 
Algorithm, we use a one-tailed bootstrapping test, consistent with prior research (Mackinnon 2009; Hayes 2022; 
Saiewitz and Piercey 2020; Pickerd and Piercey 2021). The overall path is considered statistically significant if at 
least 95% of the subsamples generate an overall path coefficient above zero, as suggested by our theory.  
** denotes statistical significance equivalent to p < 0.05, one-tailed. 
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TABLE 1 
Demographic Information for Audit Setting Participants 

 
Final Sample (n=100) 

 
 

Variable N Mean  
Years in Public Accounting 100 7.49  

Fair Value Experience 100 4.71  

Input to Adjustments 100 5.71  

Technology Comfort 100 5.03  

Percent Time on Public Companies 100 51.05%  

 
    

    
Note: Table 1 provides descriptive statistics on demographic information of participants in experiment one.  
 
Variable Definitions:  
Years in Public Accounting = number of years participant has worked in public accounting;  
Fair Value Experience = participants assessed their level of experience with auditing fair value estimates on a 7-
point scale with endpoints No Experience at All (1) to Highly Experienced (7); 
Input to Adjustments = participants assessed their likelihood of providing input into decisions related to proposed 
audit adjustments on a 7-point scale with endpoints Not at All Likely (1) to Highly Likely (7);  
Technology Comfort = participants assessed how comfortable they are relying on technology on a 7-point scale 
with endpoints Not at All Comfortable (1) to Very Comfortable (7); and 
Percent Time on Public Companies = percent of participants’ time spent working on public company audits. 
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Panel B: ANCOVA for Proposed Audit Adjustments 

Source 
Sum of 
Squares    df    F     pa 

Algorithm Adaptability 2.46 1 0.18  0.67 
Measurement Uncertainty 5.17 1 0.38  0.54 
Algorithm Adaptability × Measurement Uncertainty 40.66 1 2.96  0.04† 
Follow Gas Price 76.41 1 5.56  0.02 
Error  95   

 

Panel C: Follow-Up Comparisons for Proposed Audit Adjustments 
Source         df      t     p 

Effect of Algorithm Adaptability given Higher Measurement Uncertainty (B vs D) 1,95 1.56    0.06† 
Effect of Algorithm Adaptability given Lower Measurement Uncertainty (A vs C) 1,95 0.91    0.37 
Effect of Measurement Uncertainty given Learning Algorithm (A vs B) 1,95 0.78       0.44 
Effect of Measurement Uncertainty given Static Algorithm (C vs D) 1,95 1.68    0.10 

     

Note: Table 2 reports the results of Experiment 1. All reported analyses include the covariate (i.e., Follow Gas Price).  
The estimated marginal means in Panel A, also known as adjusted least-squares means, are also adjusted for the effect 
of the covariate (i.e., Follow Gas Price). 
Dependent variable:  
Proposed Audit Adjustment = the amount of participants’ proposed audit adjustments to the Patent Impairment Loss 
Estimate on a scale from $0 million (no adjustment) to $10.5 million (full adjustment of the difference between the 
firm’s estimate and the client’s estimate).  
Independent variables and covariate:  
Algorithm Adaptability = manipulated as static algorithm (i.e., not capable of adapting) or learning algorithm (i.e., 
capable adapting).  
Measurement Uncertainty = manipulated as higher future uncertainty or lower future uncertainty.  
Follow Gas Price = a covariate which measures how closely participants have tracked natural gas prices in the past 
12 months on a scale from 1 = “Not Closely at All” to 7 = “Extremely Closely”.   
a We derive the one-tailed equivalent p-values in Panel B from the ANCOVA contrast t-statistics, which are equivalent 
to the square roots of the respective F-statistics (see, e.g., Kachelmeier and Williamson [2010]; Piercey [2011]; 
Saiewitz and Kida [2018]). 
† p-values are equivalent to a one-tailed test, consistent with our directional predictions.  

 

 

TABLE 2 
Proposed Audit Adjustments 

 
Panel A: Descriptive statistics: Estimated Marginal Means (standard error) [n] Cell 
 

     Degree of Measurement Uncertainty   
    Lower 

Measurement 
Uncertainty  

Higher 
Measurement 
Uncertainty  Overall 

Algorithm 
Adaptability 

 

 
Learning Algorithm 

  5.74  6.59  6.16 
   (0.79)  (0.73)  (0.54) 
   [22] 

 
[26] 

 
[48] 

     A  

 
B  

 

 
Static Algorithm 

  6.73 
 

4.97  5.85 
   (0.74)  (0.73)  (0.51) 
   [26] 

 
[26] 

 
[52] 

 
 

  C  

 
D  

 

 Overall   6.24 
 

5.78   
    (0.54) 

 
(0.52)   

    [48] 
 

[52] 
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TABLE 3 

Demographic Information for Non-Audit Setting Participants 
 

Final Sample (n=145) 
 

 
Variable N Mean  

FinAcctCourses 145 9.46  

Forecast Experience 145 3.43  

Technology Comfort 145 5.55  

Age 145 29.43  

    
    
    
Note: Table 3 provides descriptive statistics on demographic information of participants.  
 
Variable Definitions:  
FinAcctCourses = number of finance and accounting courses participant has taken;  
Forecast Experience = participants assessed their level of experience with making projections and forecasts on a 
7-point scale with endpoints No Experience At All (1) to Highly Experienced (7); and 
Technology Comfort = participants assessed how comfortable they are relying on technology on a 7-point scale 
with endpoints Not At All Comfortable (1) to Very Comfortable (7); and 
Age = participant’s age. 
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Panel B: ANOVA for Weight of Advice 

Source 
Sum of 
Squares    df    F     pa 

Algorithm Adaptability 0.08 1 1.34  0.25 
Measurement Uncertainty 0.14 1 2.38  0.13 
Algorithm Adaptability × Measurement Uncertainty 0.19 1 3.33 0.04† 
Error 8.16 141   

 
Panel C: Follow-Up Comparisons for Weight of Advice 

Source         df      t     p 
Effect of Algorithm Adaptability given Higher Measurement Uncertainty (B vs D) 1,141 2.10    0.02† 
Effect of Algorithm Adaptability given Lower Measurement Uncertainty (A vs C) 1,141 0.48    0.64 
Effect of Measurement Uncertainty given Learning Algorithm (A vs B) 1,141 2.44     0.02 
Effect of Measurement Uncertainty given Static Algorithm (C vs D) 1,141 0.20    0.84 

     
Note: Table 4 reports the results of Experiment 2.  
Dependent variable:  
Weight of Advice (WOA) = participants’ advice utilization which is calculated as (initial estimate – final 
estimate)/(initial estimate – E-Val system’s estimate) and ranges from 0 to 1 where larger values of WOA indicates 
greater weighting of advice provided by the algorithm (i.e., greater reliance on advice).  
Independent variables:  
Algorithm Adaptability = manipulated as static algorithm (i.e., not capable of adapting) or learning algorithm (i.e., 
capable adapting).  
Measurement Uncertainty = manipulated as higher future uncertainty or lower future uncertainty.  
a We derive the one-tailed equivalent p-values in Panel B from the ANOVA contrast t-statistics, which are equivalent 
to the square roots of the respective F-statistics (see, e.g., Kachelmeier and Williamson [2010]; Piercey [2011]; 
Saiewitz and Kida [2018]). 
† p-values are equivalent to a one-tailed test, consistent with our directional predictions.  

 
 

TABLE 4 
Weight of Advice 

 
Panel A: Descriptive statistics: Least squares mean (standard error) [n] Cell 

 

 
     Degree of Measurement Uncertainty   
    Lower 

Measurement 
Uncertainty  

Higher 
Measurement 
Uncertainty  Overall 

Algorithm 
Adaptability 

 

 
Learning Algorithm 

  0.62  0.75  0.68 
   (0.04)  (0.04)  (0.03) 
   [39] 

 
[37] 

 
[76] 

     A  

 
B  

 

 
Static Algorithm 

  0.64 
 

0.63  0.64 
   (0.04)  (0.04)  (0.03) 
   [34] 

 
[35] 

 
[69] 

 
 

  C  

 
D  

 

 Overall   0.63 
 

0.69   
    (0.03) 

 
(0.03)   

    [73] 
 

[72] 
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